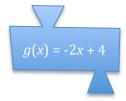


Goal: To identify, evaluate, graph and write linear equations.


I. Warm Up: Complete the table using the following flowchart:

Choose a number	Multiply by 9	Subtract original number	Divide by 4

Make a prediction about any number. Will this always be true? Explain.

II. Function Notation: Linear equations can be written as y = 3x - 6. Another way to write this equation using **function notation** is _____ "Why in the ever-beautiful world might I want to write it like this?!" you may ask. Well, here's why:

Ex 1: Evaluate g(x) = -2x + 4 when x = -3.

Try It! Evaluate each function below when x = -3.

a.
$$f(x) = 7x + 13$$

a.
$$f(x) = 7x + 13$$
 b. $h(x) = -\frac{2}{3}x - 11$ c. $g(x) = 5 - 3x$

c.
$$g(x) = 5 - 3x$$

III. Write a Linear Function Rule

Change in life is inevitable. And constant change the essential characteristic of a ______. We call this change the ______ or, graphically, the s______.

Ex 2: The cost to make 4 bracelets is shown in the table. How can you determine the cost to make any number of bracelets?

Step 1: Determine relationship

Step 2: Write function using slope-intercept form.

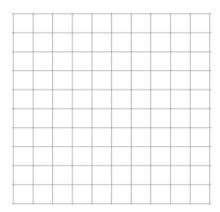
$$f(x) = mx + b$$

Step 3: Find the value of *b*.

Try It! Write a linear function for the data in each table using function notation.

 x
 1
 2
 3
 4

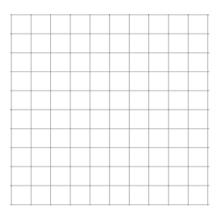
 y
 6.5
 13
 19.5
 26

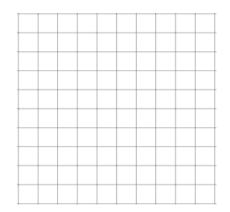

 x
 1
 2
 3
 4

 y
 1
 4
 7
 10

III. Application

Ex 3: Tamika records the outside temperature at 6:00 a.m. The temperature increases by $2^{\circ}F$ every hour for the next 6 hours. If the temperature continues to increase at the same rate, what will the temperature be at 2:00 p.m.?




Does using a linear function realistically represent the function for the domain of 0 < x < 24?

Try It! Sketch the graph of each function.

a.
$$f(x) = -x + 1$$

b.
$$g(x) = 3x + 1$$

Concept List

linear equation	function	domain
range	input	linear function
ordered pairs	output	function notation

Choose a concept from the list that best represents the item in each box. Each concept can be used more than one time.

1. (1, 2), (2, 4)	2. 2 y 1 x x x x x x x x x x x x x x x x x x	3. x y 1 2 2 4 3 6 The shaded portion of the table
4. f(x)	5. x y 2 4 4 8 6 10 Each input is paired with exactly one output value.	6. f(4) = 11 ↑ This value
7. x y 1 2 2 4 3 6 The shaded portion of the table	8. <i>f</i> (4) = 11 ↑ This value	9. $y = -3x - 2$